Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 410

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Joint clarification of contaminant plume and hydraulic transmissivity via a geostatistical approach using hydraulic head and contaminant concentration data

Takai, Shizuka; Shimada, Taro; Takeda, Seiji; Koike, Katsuaki*

Mathematical Geosciences, 56(2), p.333 - 360, 2024/02

 Times Cited Count:0 Percentile:0.01(Geosciences, Multidisciplinary)

To enable proper remediation of accidental groundwater contamination, the contaminant plume evolution needs to be accurately estimated. In the estimation, uncertainties in both the contaminant source and hydrogeological structure should be considered, especially the temporal release history and hydraulic transmissivity. Although the release history can be estimated using geostatistical approaches, previous studies use the deterministic hydraulic property field. Geostatistical approaches can also effectively estimate an unknown heterogeneous transmissivity field via the joint data use, such as a combination of hydraulic head and tracer data. However, tracer tests implemented over a contaminated area necessarily disturb the in situ condition of the contamination. Conversely, measurements of the transient concentration data over an area are possible and can preserve the conditions. Accordingly, this study develops a geostatistical method for the joint clarification of contaminant plume and transmissivity distributions using both head and contaminant concentration data. The applicability and effectiveness of the proposed method are demonstrated through two numerical experiments assuming a two-dimensional heterogenous confined aquifer. The use of contaminant concentration data is key to accurate estimation of the transmissivity. The accuracy of the proposed method using both head and concentration data was verified achieving a high linear correlation coefficient of 0.97 between the true and estimated concentrations for both experiments, which was 0.67 or more than the results using only the head data. Furthermore, the uncertainty of the contaminant plume evolution was successfully evaluated by considering the uncertainties of both the initial plume and the transmissivity distributions, based on their conditional realizations.

Journal Articles

JSME series in thermal and nuclear power generation Vol.3 (Sodium-cooled fast reactor development; R&Ds on thermal-hydraulics and safety assessment towards social implementation)

Tanaka, Masaaki; Uchibori, Akihiro; Okano, Yasushi; Yokoyama, Kenji; Uwaba, Tomoyuki; Enuma, Yasuhiro; Wakai, Takashi; Asayama, Tai

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

The book, JSME Series in Thermal and Nuclear Power Generation Vol.3 Sodium-cooled Fast Reactor, was published as a 30th anniversary memorial project of Power & Energy Systems Division. This paper describes an introduction of the book on a part of key technologies regarding safety assessment, thermal-hydraulics, neutronics, and fuel and material development. This introductory paper also provides an overview of an integrated evaluation system named ARKADIA to offer the best possible solutions for challenges arising during the design process, safety assessment, and operation of a nuclear plant over its life cycle, in active use of the R&D efforts and knowledges on thermal-hydraulics and safety assessment with state-of-the-art numerical analysis technologies.

Journal Articles

Evaluating the effectiveness of a geostatistical approach with groundwater flow modeling for three-dimensional estimation of a contaminant plume

Takai, Shizuka; Shimada, Taro; Takeda, Seiji; Koike, Katsuaki*

Journal of Contaminant Hydrology, 251, p.104097_1 - 104097_12, 2022/12

 Times Cited Count:3 Percentile:46.08(Environmental Sciences)

When assessing the risk from an underground environment that is contaminated by radioactive nuclides and hazardous chemicals and planning for remediation, the contaminant plume distribution and the associated uncertainty from measured data should be estimated accurately. While the release history of the contaminant plume may be unknown, the extent of the plume caused by a known source and the associated uncertainty can be calculated inversely from the concentration data using a geostatistical method that accounts for the temporal correlation of its release history and groundwater flow modeling. However, the preceding geostatistical approaches have three drawbacks: (1) no applications of the three-dimensional plume estimation in real situations, (2) no constraints for the estimation of the plume distribution, which can yield negative concentration and large uncertainties, and (3) few applications to actual cases with multiple contaminants. To address these problems, the non-negativity constraint using Gibbs sampling was incorporated into the geostatistical method with groundwater flow modeling for contaminant plume estimation. This method was then tested on groundwater contamination in the Gloucester landfill in Ontario, Canada. The method was applied to three water soluble organic contaminants: 1,4-dioxane, tetrahydrofuran, and diethyl ether. The effectiveness of the proposed method was verified by the general agreement of the calculated plume distributions of the three contaminants with concentration data from 66 points in 1982 (linear correlation coefficient of about 0.7). In particular, the reproduced large spill of organic contaminants of 1,4-dioxane in 1978 was more accurate than the result of preceding minimum relative entropy-based studies. The same peak also appeared in the tetrahydrofuran and diethyl ether distributions approximately within the range of the retardation factor derived from the fraction of organic carbon.

Journal Articles

Automatization of parametric analyses of influence factor on load derived from thermal transient in design optimization method for plant structure in sodium-cooled fast reactor

Kikuchi, Norihiro; Mori, Takero; Okajima, Satoshi; Tanaka, Masaaki; Miyazaki, Masashi

Dai-26-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2022/07

In JAEA, the design optimization method for plant structure has been developed on the process to output optimal solution of the thickness of reactor vessel wall against thermal transient and seismic loads in a SFR as a representative problem. Resistance characteristic of the wall on the load derived from thermal transient is one of the most important factors for safety estimation on the structural integrity. Failure probability of components against thermal transient was set to one of variables in the objective function for a common scale to compare with other variables in different failure mechanisms. In the iterative process to achieve the optimal solution, a number of evaluations to measure the influence on the load derived from thermal transient was necessarily conducted. More reduction of required time for evaluations is desired. To perform the iterative evaluation process efficiently, the automatization of parametric analyses was implemented in the optimization process.

Journal Articles

Estimation of contaminated materials concentration by a geostatistical method with groundwater flow

Takai, Shizuka; Shimada, Taro; Takeda, Seiji; Koike, Katsuaki*

Joho Chishitsu, 32(3), P. 95, 2021/09

We received best presentation award GEOINROUM-2021 for the presentation on "Estimation of contaminated materials concentration by a geostatistical method with groundwater flow". We submit the comments of impression for getting the Award to Geoinformatics.

Journal Articles

Validation study of finite element thermal-hydraulics analysis code SPIRAL to a large-scale wire-wrapped fuel assembly at low flow rate condition

Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Gerschenfeld, A.*

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.73 - 80, 2020/10

A finite element thermal-hydraulics simulation code SPIRAL has been developed in Japan Atomic Energy Agency (JAEA) to analyze the detailed thermal-hydraulics phenomena in a fuel assembly (FA) of Sodium-cooled Fast Reactors (SFRs). The numerical simulation of a large-scale sodium test for 91-pin bundle (GR91) at low flow rate condition was performed for the validation of SPIRAL with the hybrid k-e turbulence model to take into account the low Re number effect near the wall in the flow and temperature fields. Through the numerical simulation, specific velocity distribution affected by the buoyancy force was shown on the top of the heated region and the temperature distribution predicted by SPIRAL agreed with that measured in the experiment and the applicability of the SPIRAL to thermal-hydraulic evaluation of large-scale fuel assembly at low flow rate condition was indicated.

JAEA Reports

Development of MIG2DF Version 2

Takai, Shizuka; Kimura, Hideo*; Uchikoshi, Emiko*; Munakata, Masahiro; Takeda, Seiji

JAEA-Data/Code 2020-007, 174 Pages, 2020/09

JAEA-Data-Code-2020-007.pdf:4.23MB

The MIG2DF computer code is a computer program that simulates groundwater flow and radionuclide transport in porous media for the safety assessment of radioactive waste disposal. The original version of MIG2DF was released in 1992. The original code employs a two-dimensional (vertical or horizontal cross-section, or an axisymmetric configuration) finite-element method to approximate the governing equations for density-dependent saturated-unsaturated groundwater flow and radionuclide transport. Meanwhile, for geological disposal of radioactive wastes, landscape evolution such as uplift and erosion needs to be assessed as a long-term geological and climate events, considering site conditions. In coastal areas, the impact to groundwater flow by change of salinity distribution to sea level change also needs to be considered. To deal with these events in the assessment, we have revised the original version of MIG2DF and developed the external program which enables MIG2DF to consider unsteady landscape evolution. In these developments, this report describes an upgrade of MIG2DF (Version 2) and presents the configuration, equations, methods, and verification. This reports also give the explanation external programs of MIG2DF: PASS-TRAC (the particle tracking code), PASS-PRE (the code for dataset preparation), and PASS-POST (the post-processing visualization system).

JAEA Reports

Data of long term hydro-pressure monitoring on Tono Regional Hydrogeological Study; Project for fiscal year 2019

Onoe, Hironori; Takeuchi, Ryuji

JAEA-Data/Code 2020-008, 41 Pages, 2020/08

JAEA-Data-Code-2020-008.pdf:3.14MB
JAEA-Data-Code-2020-008-appendix(CD-ROM).zip:93.51MB

Japan Atomic Energy Agency (JAEA) has been conducting a wide range of geoscientific research in order to build scientific and technological basis for geological disposal of nuclear wastes. This study aims to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. The Regional Hydrogeological Study (RHS) project is a one of the geoscientific research program at Tono Geoscience Center. This project started since April 1992 and main investigations were finished to FY2004. Since FY2005, hydrogeological and hydrochemical monitoring have been continued using the existing monitoring system. Furthermore, these monitoring were ceased at the end of FY2019 due to the completion of the RHS project. This report describes the results of the long term hydro-pressure monitoring for FY2019.

Journal Articles

Methodology development for transient flow distribution analysis in high temperature gas-cooled reactor

Aoki, Takeshi; Sato, Hiroyuki; Ohashi, Hirofumi

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08

The flow distribution analysis, which is a part of thermal hydraulic design of the prismatic-type of the high temperature gas cooled reactor (HTGR) considering unintended flows between graphite blocks, has been performed for steady and conservative conditions. On the other hand, the transient analysis for satisfactorily realistic conditions will be helpful for the design improvement of prismatic-type HTGR. The present study aims to develop the transient flow distribution analysis code and confirm its applicability for the transient flow distribution analysis for prismatic-type HTGRs during anticipated operational occurrences and accidents utilizing experiences on high temperature engineering test reactor (HTTR) design. The calculation model and code were developed and validated for analysis of the unintended flows in the core and the molecular diffusion dominant in beginning air ingress behavior in an air ingress accident.

Journal Articles

Development of a flow network calculation code (FNCC) for high temperature gas-cooled reactors (HTGRs)

Aoki, Takeshi; Isaka, Kazuyoshi; Sato, Hiroyuki; Ohashi, Hirofumi

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08

The flow distribution analysis performed in the HTGR design has to take into account the interaction thermal and radiation deformations of the graphite structure, and the gaps between the graphite structures forming unintended flow. In the present study, a user-friendly flow network calculation code (FNCC) has been developed on the basis of experiences of High Temperature engineering Test Reactor (HTTR) design for HTGR design with enhanced compatibility with other HTGR design codes and with considering graphite block deformation in iteration process without manual control. The validation of FNCC was performed for the one-column flow distribution test. The analytical results using FNCC showed good agreement with the experimental results. It is concluded that FNCC was validate for the analysis of distributions of flowrate and pressure for the flow network model including the unintended flow paths in prismatic-type HTGRs.

Journal Articles

Study on cooling process in a reactor vessel of sodium-cooled fast reactor under severe accident; Velocity measurement experiments simulating operation of decay heat removal systems

Tsuji, Mitsuyo; Aizawa, Kosuke; Kobayashi, Jun; Kurihara, Akikazu; Miyake, Yasuhiro*

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 5 Pages, 2020/08

The water experiments using a 1/10 scale experimental apparatus simulating the reactor vessel of SFR were conducted to investigate the natural circulation phenomena in a reactor vessel. In this paper, the natural circulation flow field in the reactor vessel was measured by the Particle Image Velocimetry (PIV) method. The PIV measurement was carried out under the operation of the dipped-type direct heat exchanger (DHX) installed in the upper plenum when 20% of the core fuel fell to the lower plenum and accumulated on the core catcher. From the results of PIV measurement, it was quantitatively confirmed that the upward flow occurred at the center region of the lower and upper plenums. In addition, the downward flows were confirmed near the reactor vessel wall in the upper plenum and through outermost layer of the simulated core in the lower plenum. Moreover, the relationship between the temperature field and the velocity field was investigated in order to understand the natural circulation phenomenon in the reactor vessel. From the above results, it was confirmed that the natural circulation cooling path was established under the dipped-type DHX operation.

Journal Articles

Numerical simulation of laser welding different kinds of materials using a thermohydraulics computational science numerical simulation code SPLICE

Muramatsu, Toshiharu; Sato, Yuji; Kamei, Naomitsu; Aoyagi, Yuji*; Shobu, Takahisa

Nihon Kikai Gakkai Dai-13-Kai Seisan Kako, Kosaku Kikai Bumon Koenkai Koen Rombunshu (No.19-307) (Internet), p.157 - 160, 2019/10

no abstracts in English

Journal Articles

Development of evaluation method for variability of groundwater flow conditions associated with long-term topographic change and climate perturbations

Onoe, Hironori; Kosaka, Hiroshi*; Matsuoka, Toshiyuki; Komatsu, Tetsuya; Takeuchi, Ryuji; Iwatsuki, Teruki; Yasue, Kenichi

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 26(1), p.3 - 14, 2019/06

In this study, it is focused on topographic changes due to uplift and denudation, also climate perturbations, a method which is able to assess the long-term variability of groundwater flow conditions using the coefficient variation based on some steady-state groundwater flow simulation results was developed. Spatial distribution of long residence time area which is not much influenced due to long-term topographic change and recharge rate change during the past one million years was able to estimate through the case study of the Tono area, Central Japan. By applying this evaluation method, it is possible to identify the local area that has low variability of groundwater flow conditions due to topographic changes and climate perturbations from the regional area quantitatively and spatially.

Journal Articles

Prospects based on T-H roadmap through communication

Nakamura, Hideo

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 61(4), p.270 - 272, 2019/04

no abstracts in English

Journal Articles

Application of data assimilation in groundwater hydrology; Characterization of hydraulic heterogeneity of hydrogeological structure based on in-situ data

Onoe, Hironori

Keisan Kogaku, 24(1), p.3851 - 3854, 2019/01

In this study, inverse analysis using observed data of pumping test was carried for confirmation of the applicability of inverse analysis method of groundwater flow based on in-situ data. Target of this inverse analysis was spatial distribution of hydrogeological heterogeneity of the fault. Inverse analysis had been applied to the area around the Mizunami Underground Research Laboratory, which is constructed by the Japan Atomic Energy Agency in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste. As a result of this study, the estimated results of inverse analysis are consistent with previous study result, and it was concluded that inverse analysis using hydraulic response due to pumping test is effective for hydrogeological characterization in deep underground.

Journal Articles

Development of numerical estimation method for thermal hydraulics in reactor vessel of sodium-cooled fast reactor under decay heat removal system operation conditions; Preliminary thermal hydraulics simulation for simulated reactor vessel in sodium experimental apparatus PLANDTL-2

Tanaka, Masaaki; Ono, Ayako; Hamase, Erina; Ezure, Toshiki; Miyake, Yasuhiro*

Nihon Kikai Gakkai Kanto Shibu Ibaraki Koenkai 2018 Koen Rombunshu (CD-ROM), 4 Pages, 2018/08

Decay heat removal system (DHRS) by using the natural circulation without depending on the pump as the mechanical equipment is recognized as one of the most effective methodologies for the sodium-cooled fast reactor from the viewpoint of the safety enhancement. The numerical estimation method which can predict thermal hydraulic phenomena in the natural circulation under the plant cooling process by operating the various DHRSs including the severe accident is necessarily required. In this paper, the numerical results of the preliminary analysis for the sodium experiment condition with the apparatus of PLANDTL-2, in which the core and the upper plenum with a dipped-type direct heat exchanger (DHX) were modeled, were discussed, in order to establish an appropriate numerical models for the direct heat exchanger (DHX).

Journal Articles

Model calculation of Cr dissolution behavior of ODS ferritic steel in high-temperature flowing sodium environment

Otsuka, Satoshi; Tanno, Takashi; Oka, Hiroshi; Yano, Yasuhide; Kato, Shoichi; Furukawa, Tomohiro; Kaito, Takeji

Journal of Nuclear Materials, 505, p.44 - 53, 2018/07

AA2017-0603.pdf:1.7MB

 Times Cited Count:2 Percentile:20.74(Materials Science, Multidisciplinary)

A calculation model was constructed to systematically study the effects of environmental conditions (i.e. Cr concentration in sodium, test temperature, axial temperature gradient of fuel pin, and sodium flow velocity) on Cr dissolution behavior. Chromium dissolution was largely influenced by small changes in Cr concentration (i.e. chemical potential of Cr) in liquid sodium in the model calculation. Chromium concentration in sodium coolant, therefore, should be recognized as a critical parameter for the prediction and management of Cr dissolution behavior in the sodium-cooled fast reactor (SFR) core. Because the fuel column length showed no impact on dissolution behavior in the model calculation, no significant downstream effects possibly take place in the SFR fuel cladding tube due to the much shorter length compared with sodium loops in the SFR plant and the large axial temperature gradient. The calculated profile of Cr concentration along the wall-thickness direction was consistent with that measured in BOR-60 irradiation test where Cr concentration in sodium bulk flow was set at 0.07 wt ppm in the calculation.

JAEA Reports

Study on modeling and analysis of groundwater flow with inverse analysis, 2 (Joint research)

Onoe, Hironori; Yamamoto, Shinya*; Kohashi, Akio; Ozaki, Yusuke; Sakurai, Hideyuki*; Masumoto, Kiyoshi*

JAEA-Research 2018-003, 84 Pages, 2018/06

JAEA-Research-2018-003.pdf:17.44MB

In this study, numerical experiments considered hydrogeological structures, which has high heterogeneity around the Mizunami Underground Research Laboratory and inverse analysis using in-situ data were carried out. The results showed that concentration of hydrogeological structure to be estimated and location of monitoring point is important for application of inverse analysis. Furthermore, it is concluded that inverse analysis using hydraulic response due to pumping test is effective for hydrogeological characterization.

Journal Articles

Study on applicability of fast reactor plant dynamics analysis code to core thermal hydraulics under natural circulation decay heat removal conditions

Hamase, Erina; Doda, Norihiro; Nabeshima, Kunihiko; Ono, Ayako; Ohshima, Hiroyuki

Nihon Kikai Gakkai Rombunshu (Internet), 83(848), p.16-00431_1 - 16-00431_11, 2017/04

A plant dynamics analysis code Super-COPD is being developed in JAEA for the design and safety assessments of sodium-cooled fast reactors (SFRs). In this study, the friction loss coefficients in the whole core thermal-hydraulic model was modified to improve the prediction accuracy of the sodium temperature distribution in a fuel subassembly under the natural circulation conditions. The modified whole core model was applied to analyses of experiments that were performed by using JAEA's test facility PLANDTL as a part of the code validation study. The obtained numerical results of sodium temperature distributions in the core showed good agreement with the measured data. It implies that the modified whole core model can properly reproduce dominant thermal-hydraulic phenomena in the core region under natural circulation conditions, i.e., flow redistribution among fuel subassemblies as well as in a fuel subassembly and inter-subassembly heat transfer.

410 (Records 1-20 displayed on this page)